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Received 30 June 1988, in final form 26 September 1988 

Abstract. A two-band tight-binding Hamiltonian is used to investigate the interaction 
between the energy bandsof aperiodicsystemin the presence of an electric field. Information 
on the existence of Stark-Wannier states and Stark ladders in this two-band system is 
obtained. The possibility of using a semiconductor superlattice device to experimentally 
observe Stark ladders and Zener tunnelling between the energy bands is also discussed. 

1. Introduction 

The effect of a substantial electric field applied across a periodic structure was first 
investigated by Zener [ 11 who used the sloping band picture (figure 1) to study electrical 
breakdown in solids caused by electrons crossing from the valence band to the conduction 
band, an effect now termed Zener tunnelling. The concept of a Stark ladder was later 
introduced by Wannier [2,3] to explain the energy spectrum of states within these 
sloping bands. It is derived by writing the Schrodinger equation for the periodic system 
in the presence of an applied electric field as 

As V(x + a )  = V ( x ) ,  a translation of (1) by a lattice constant ‘a’, gives 

Therefore, for any state located at an energy E,  there is an identical state located at a 
shifted energy E + eFu with the same wavefunction except that its position is displaced 
by a lattice constant. In fact (1) can be translated by any number of lattice constants to 
eventually form the familiar Stark ladder given by 

E ,  = eFam + Eo (3) 
where m labels the Stark state and E, denotes the origin of the ladder. 

Therefore, the basic requirement exists that every energy level must belong to a 
ladder and that the states of the ladder are spatially shifted relative to one another by 
t Present address: Max-Planck-Institut Fur Festkorperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 
80, Federal Republic of Germany. 
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Figure 1. Energy versus position 
diagram showing the effect an elec- 
tric field has on the bands of a 
periodic system. The shaded areas 
represent the allowed energy - 

X regions. 

integer multiples of the lattice constant. In fact, we will show later that there is a one-to- 
one relationship between each state in the ladder and each unit cell. It is not required, 
however, that every energy level must belong to the same ladder. Indeed this can not 
always be possible if the above requirements are to be satisfied. In a system with only 
one energy band, all the Stark levels will belong to the same ladder. The inclusion of an 
extra band will result in another Stark ladder being formed to incorporate the extra 
energy levels. In the context of the sloping band picture, we can view each band as being 
comprised of a Stark ladder of energy states. 

To understand how these banded Stark ladders interact with each other, we shall 
now study in more detail the Schrodinger equation given in (1). We write the Stark- 
Wannier wavefunctions as superpositions of Bloch states 

Y(x) = C(n’, k’)ln’,  k’) .  
n’.k’ 

(4) 

Substituting (4) into (1) and multiplying through by the Bloch state (n,  kl gives 

[ ~ ( n ,  k )  - E]C(n,  k )  = eF (n ,  klxln’, k’)C(n’,  k ’ )  ( 5 )  
n’ .k’  

where ~ ( n ,  k )  is the Bloch energy. The matrix element can now be written [4] 

where 

U,&) is the periodic part of the Bloch function and the integral is only over a unit cell. 
The effective Schrodinger equation now has the form 

a 
[ ~ ( n , k )  - E]C(n ,k)  = ieF-C(n, k )  + eFzX , , , ,C(n ’ , k ) .  (8) ak n’ 

The important term here is the matrix element X,,,, which couples the bands together. 
In the paper by Saitoh [4], this term was neglected to enable a study of a single band 



Stark-Wannier states and Stark ladders 1451 

system to be made. Using the tight-binding approximation, Saitoh derived the Stark- 
Wannier wavefunction to be 

where J&) is the Bessel function of the first kind and W is the band width. This now 
shows that an electron in the mth state of the single-band Stark ladder is centred around 
x = ma, and localised within a length W/eF called the Stark length L,. The zero-point 
energy of the Stark ladder E,  was also derived for the single band model and found to 
be 

where E(k) is the dispersion relation for the unperturbed system. 
In order to carry out a complete multiband analysis, it is important to include the 

interband termX,.,, when solving (8) to allow for Zener tunnelling between bands. This 
then permits the delocalisation of electrons. However, there has been some controversy 
about whether this matrix element between the bands actually exists [5-71. Fukuyama 
et a1 [8] have studied this problem briefly using a two-band model and have concluded 
that two interpenetrating Stark ladders do exist and that they are coupled together. This 
is a very important point as an absence of any interband coupling could dramatically 
reduce the transport of electrons through the system. 

Emin and Hart [9]  have attempted to solve the problem of a multiband system 
analytically. They divide the effect of an electric field on a one-dimensional chain of N 
square-well potentials in the presence of an electric field into two components. One 
component alters the shape of each potential well whilst the other shifts each one by an 
energy eFa relative to its neighbour ('a' is still the period). The first effect can then be 
included into the system's periodic potential to form a basis of electric-field-dependent 
Bloch states and the second effect can be represented by a step function in the 
Hamiltonian. The matrix element given in ( 5 )  can be rewritten in the following way to 
represent the effect splitting the field into the two components has on the interband 
coupling. 

As we are considering afinite system we can write 
N-1 

(12) 

k = 2n/Nan where n is an integer (13) 

ei(k'-k)ma = ~6 
k ,k '  

m=O 

as an exact relation for the ks that satisfy 

The ks therefore form a complete representation of the finite system. Where necessary, 
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(12) should be treated as the definition of the Kronecker delta. The matrix element can 
now be written 

3 
( n ,  klxln', k')  = Ndk,k, U & ( X )  X U , , p ( X )  dx - i N ,  dk (6k,k,)l(n,  k ;  n ' ,  k')  (14) 

where 

The first term in (14) contains the component of the field that alters the shape of the 
wells and the second term results from the step-function potential which shifts each well 
relative to its neighbour. The second term can be written in the following way: 

1 (16) 
a a 

iN bk,k,-Z(n,k;n',k')  - , [b , .k , l (n,k;n' ,k')]  . ( dk' dk 

Emin and Hart then show that after summing over k' and n',  the first term is zero and 
the second gives no interband coupling. They therefore conclude that it is the effect of 
the electric field on the shape of the wells that gives the interband couTling. 

To continue the work on a multiband system, a two band tight-binding Hamiltonian 
will be used to study the properties of a one dimensional periodic system 50 units long 
in the presence of an electric field. A two-band model is used as it contains all the 
essential physics of interband coupling without the problems associated with a complete 
multiband analysis. The use of more than two bands would just make the situation more 
complicated without introducing any new concepts. We will clarify some of the aspects 
in the theory of Stark-Wannier states and Stark ladders by solving the model numerically 
and show how the energy bands interact with one another. We will also show that Emin 
and Hart are mistaken in the way they consider the bands to interact. We will also 
describe how to observe the effects of the Stark ladders and show that this can best be 
done using a superlattice structure. 

2. Themodel 

To explicitly calculate the energy spectrum and the wavefunctions of a periodic two- 
band system in the presence of an electric field, we use a one-dimensional nearest- 
neighbour tight-binding model. We define two states on site i, an s state )i, s) andap  state 
Ii, p) which are both tightly bound onto that site. We therefore write the Hamiltonian 
representing a two-band system as 

H =  C E S I i , S ) ( S , i l  - v&- l , s ) (s , i /+ IZ,s)(s,i+ 11) 
I 

+2EPIi,P)(P,i l  - v p ~ l ~ - l , P ~ ~ P , ~ l + l ~ , P ~ ~ P , ~ + l l ~  

+ 2 v,, ( I i  - 1, 4(P, i I  + I i ,  SXP,  i + 1 I )  
I 

i 
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Energy 
3 

I 
Figure 2. The energy spectrum of 
the two-band model. Two inter- 
penetrating Stark ladders are 
clearly visible. 

where E, and E, correspond to the on-site energies of the s and p orbitals, V, and V, 
correspond to the matrix element between s and p orbitals respectively and Vsp is the 
matrix element between an s orbital and its neighbouring p orbital. 

To form two bands where the second band is wider than the first and the gap between 
them is of the order of the band widths we used E, = 0, E, = 14, V, = 1, V,  = 3 and 
V,, = 2. This results in the width of the lower band, which we shall refer to as the s band, 
being 4 and the width of the upper band, the p band, being 12. The resulting band gap 
was 6. To simulate the effect of the electric field we perturbed each on-site energy by eFi 
where e is the electronic charge which was set to one, F the field strength and i the site 
label. This is known as the ladder approximation. Although we refer to the two bands 
as s bands and p bands, these bands are never comprised of states that are purely s-like 
or p-like, but of a mixture. Of course, in the absence of an electric field, the s band does 
contain more s-like states than p-like states and similarly for the p band. 

3. Results 

Figure 2 is an energy level diagram obtained by diagonalising the Hamiltonian given in 
(17) at F = 1.265. The two interpenetrating Stark ladders are clearly discernible and the 
spacing between the energy levels in each of the ladders is eFu. This is therefore in total 
agreement with the result obtained by Fukuyama et a1 [8]. It should be noted here that 
the energy levels given in figure 2 are only a selection which represent the energy 
spectrum in the bulk material. Energy levels that lie at the extremes of this energy 
spectrum are effected by the edges of the sample. This consequently results in a modi- 
fication of the energy spacing between the Stark levels. 

To confirm the validity of viewing the Stark ladders as belonging to separate bands, 
we calculated the wavefunction of two neighbouring energy states, each one belonging 
to one of the ladders given in figure 2 (cf figure 3). It can clearly be seen that each 
wavefunction has its maximum centred on different points. By referring back to figure 
1, we can see that a state which belongs to one of the bands has its centre or its point of 
maximum amplitude shifted relative to a state that belongs to the other band. Therefore, 
from figure 3 we conclude that the wavefunctions, and therefore the Stark ladders, do 
belong to different bands. 

Furthermore, let us also consider the spatial extent of the wavefunction. In figure 3 
each wavefunction covers about 20 sites. The Stark length at a field of 1.265 and with a 
band width of 22 (this includes both bands and the gap) is 17.4. It therefore seems that 
the wavefunctions straddle both bands. But it is also clear in figure 3 that the wavefunction 
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Figure 3. Two Stark-Wannier wavefunctions at F =  1.236. Notice how their centres are 
spatially shifted relative to one another. 
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Figure 4. The amount of p state in a wavefunction belonging to the lower band plotted 
against varying electric field. 

represented by a dotted curve has a longer allowed energy region than its counterpart 
which points to it having a longer Stark length. We therefore conclude that this wavefunc- 
tion must belong to the wider band (the p band). 

From the way the wavefunctions straddle both bands, it seems evident that there 
must be tunnelling between the bands at this field and therefore, there must be some 
mixing of states belonging to different ladders. By varying the field it is possible to vary 
the relative position of the ladders which must effect the mixing of states belonging to 
different bands. Furthermore, when the ladders exactly line up and become degenerate 
with one another, each wavefunction must have an equal component of states belonging 
to both the s band and the p band. We therefore plot the amount of p state in a 
wavefunction belonging to the s band versus field (figure 4) to give an indication of the 
amount of band mixingat different fields. Every peakin the graph indicates a degeneracy 
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I 

Figure 5.  Plot of the electric field at which resonance occurs between the two bands against 
the reciprocal of the Stark ladder indexes. 

in energy resulting from the two ladders resonating with each other. This seems to 
become less frequent however as the field is increased and is certainly not periodic. 

The field at which the resonances occur F,, can be found by using (3). We label the 
states in the lower band as E,,, and for the upper band we use E,. At resonance, 
E, = E,,, which gives 

E ,  - E ,  F ,  = 
ea(n - m) 

where E, is the zero point of energy for the upper band and E, is that for the lower band. 
So resonance between the Stark ladders occurs at a field given by the reciprocal of integer 
numbers ranging from 1 to 49. That is the first resonance occurs when the first Stark state 
from the p band (m = 1) lines up with the 50th Stark states from the s band (n  = 50). 
The second resonance will then occur when the second Stark state from the p band (m = 
2) lines up with the 50th Stark states from the s band (n  = 50). This is equivalent to the 
first Stark state from the p band (m = 1) lining up with the 49th Stark state from the s 
band (n  = 49). 

For a one-band model Saitoh derived (10) to give the zero-point energy, which for the 
tight-binding model is Ep - E, = E, - E, as the integral of cos ka(e(k) = E  - 2Vcos ka) 
over the Brillouinzoneiszero. Therefore, E, - E, = 14. ByplottingF,versus l / ( n  - m) 
(figure 5 )  for our model we find that the points completely lie on a straight line with a 
gradient of 15.29 ? 0.05. For a = e = 1, equation (18) gives a gradient of 14. This small 
discrepancy in the gradient is due to the fact that the values used for E, and E, in (18) 
are only valid for a one-band model. For two interacting bands we can expect E, - E, 
to be somewhat larger. 

When the two Stark ladders are in resonance, the Stark-Wannier states in the two 
bands are degenerate. If there is a non-zero matrix element between the bands then we 
can expect this degeneracy to be lifted by each pair of Stark-Wannier states splitting and 
consequently anticrossing as the field is varied. In figure 6 we follow two levels, each 
located in different bands, as the field is varied. If there was a zero matrix element 
between the bands so that Zener tunnelling did not take place, then the levels would 
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3.5 3.7 3.9 4.1 

f 
Figure 6.  Anticrossing of energy levels belonging to different Stark ladders. This represents 
a movement of charge between the bands. 

cross, but it is very clear that they do not cross. This means that if an electron is located 
in the lower band, it will cross over to the upper band as the field is varied. 

To follow the form of the wavefunction as this happens it is useful to plot the inverse 
participation ratio P-' which was first introduced by Bell and Dean [lo] in the theory of 
localisation. It is defined as 

where cPi is the amplitude of the wavefunction on site i. It is effectively a measure of the 
volume occupied by the wavefunction and can be used as a means of finding the extent 
of the wavefunction. For example, if it is becoming more extended, P-' will tend to zero 
as the dominator in (19) dominates over the numerator. However, if the wavefunction 
is becoming more localised P-' will tend to aconstant. Therefore when there is maximum 
band mixing in our model, the wavefunction is at its maximum extension. This is shown 
in figure 7. Alignment between the two ladders causes a large dip in P-' characterising 
delocalisation. It should also be noted that P-' is getting larger at maximum misalignment 
as the field is increased. This means that when the wavefunctions are centred on their 
respective bands, they are becoming more localised. This is in agreement with the fact 
that the Stark length depends on the inverse of the field (L,  = W/eF). 

4. Zener tunnelling 

The size of the anticrossing of the energy levels can be a useful quantity to know when 
the size of the tunnel current that is flowing between the two bands is needed. In fact it 
is a very relevant quantity for characterising the amount of band mixing. Figure 4 is a 
useful plot for finding the field at which resonance occurs between the two bands, but it 
does not convey any information about how strong the resonance is. Consequently, we 
plot the size of this anticrossing A against the field (figure 8). A clearly increases as the 
field is increased with the gradient getting steeper as the field gets higher. 
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Figure 7. The inverse participation ratio plotted against the electric field. Notice that P-' 
is increasing on average. This-represents the electron becoming increasingly localised. 
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F 

Figure 8. The amount of anticrossing cf two Stark ladders plotted against the electric field. 

It may be argued that the interband coupling is a result of surface effects as we are 
only considering a finite system. However, because an increase in the field results in a 
decrease in the Stark length, the bulk Stark states interact less with the edges at larger 
fields. Therefore the amount of interband mixing should decrease as the field incrP ,ases. 
As this is not observed, it can be concluded that the interband coupling is not a result of 
surface effects. 

The increase in A may be understood in the following way. The distance between 
the bands, which is given by E,/eP, is decreasing as the field is increasing. Therefore, 
the overlap between the two bands is increasing resulting in a larger splitting of the 
energy levels. An alternative way of viewing this is that at the lower fields, the two levels 
that resonate have wavefunctions situdted on sites that are fairly widely separated. 
However, resonances that occur at high fields are between states that are spatially much 
nearer. 
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Figure 9. The natural logarithm of the amount of anticrossing of the two Stark ladders 
plotted against the reciprocal of the electric field. 

To find a form for A as a function of field we construct the following argument. Using 
the uncertainty principle we expect the tunnelling time t to be given by 

t = h / A .  (20) 
Therefore the tunnelling rate r, which is equal to the reciprocal of the tunnelling time 
goes as 

r = A. (21) 

At this point we can make an estimate of the tunnelling time between bands using the 
above equation. Taking a value for A from figure 8 of 0.2 and translating it into realistic 
units gives a value of 2 meV. This results in a tunnelling time of about 3 X s. From 
the WKB approximation, the rate r is given by 

r = exp[ -2 Ibu k dx] 

where k2 = 2m*/h2 (V(x)  - E) .  From figure 1, we can view the band gap as forming a 
triangular barrier where 

V(x> = E ,  - eFx. (23) 

This gives 

r = exp 

Combining (21) and (24) gives 

A = exp 

Therefore a plot of In A against l/Fshould result in a straight line of negative gradient. 
Figure 9 is just such a plot of our data and exhibits a fairly good straight line, especially 
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n 

Figure 10. Two Stark-Wannier wavefunctions plotted at resonance. The wavefunctions 
seem to be superpositions of the single band states. 

at lower fields. It is at the higher fields when one would expect the above theory to 
break down. This is because (25) is derived on the assumption that the wavefunctions 
are plane waves either side of the barrier and that the height of the potential barrier 
varies slowly in space. Both of these conditions are clearly violated at large electric 
fields. 

It would now seem from this analysis that equations (24) and (25) do at least give 
an approximate form for the variation of the rate of tunnelling across the two bands 
as a function of the field. So instead of having the rather counter-intuitive result that 
increasing the electric field localises the electrons, as is obtained in the single-band 
picture, we do indeed find that the electric field does increase the current across the 
sample, albeit only at the points of resonance between the bands. But these resonances 
are very closely spaced at very low fields and it would not take much broadening 
attributable to some scattering mechanism to smear all these peaks out. 

5. Multiband Stark-Wannier states 

We shall now concentrate on the form of the Stark-Wannier states. This will allow a 
comparison to be made with the one obtained analytically by Saitoh in the single band 
model (equation (9)). Figure 10 is a plot of the Stark-Wannier wavefunctions when 
the two bands are at resonance (i.e., the two wavefunctions represent the two energy 
states given in figure 6 when they are at maximum anticrossing). It is clear from this 
plot that the resultant wavefunctions are linear combinations of two states, each one 
centred on and belonging to each band. The wavefunction represented by a continuous 
line, A,!,,(x) is therefore given by 

A,!,,(x) = 11) + 12) 

A k ( 4  = 11) - 12) 

(26) 

(27) 

whilst Ak(x)  which is represented by the broken curve is given by 

The form for the states 11) and 12) also closely resemble the Bessel function solutions 
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for the single band case. We therefore conclude that the Stark-Wannier states for a 
multiple-band system are simply a superposition of the single band states which are 
Bessel functions of the first kind. 

As we are studying a tight-binding model, the fieid has no effect on the individual 
sites. Therefore, in the language of Emin and Hart, we are effectively only considering 
the step-function potential in the Hamiltonian and this gives no interband coupling. 
However, as we have shown, we do indeed get interband mixing using this model. To 
investigate this, we shall study the interband matrix element (n ,  kIxIn’, k’)  for the two 
band tight-binding model of finite length. The basis functions In, k) are now given by 

1 %  k) = eikpa[Sn.kIS) + pn.klP)l (28) 
on each site. S is the s-like function and P is the p-like function which both depend 
on the wavevector k and the band index n. Following Emin and Hart, the x in the 
matrix element is replaced by the step function 

S(x) = 0 for x < l  

S(x) = 1 for X Z - 1  

to give 

(n, kl 
N 

s(x/a - m)ln’, k’) 
m = l  

N 

= joNu[(sls:.k + (plP:.k] 

= 2 p ei(k’-k)pa loa [(sIs,*,k + (p/P,*.k][sn(,k 1s) + P n ’ . k ’  Ip)] dx 

S(x/a - m>[sn,.kr 1s) + P n ’ , k ‘  Ip)] ei(k’-k)pa dx 
m = l  

N 

p =  1 

(30) 
N a  
a ak 

= -i -7 (dk.k!)Z(tz, k ;  n’, k’). 

Again we have made use of the relation given in (12). Equation (30), not surprisingly, 
has the same form as the second term in (14), but with a different I(n, k ;  n’, k’) .  If we 
substitute this back into the Schrodinger equation given in ( 5 ) ,  we get 

[ ~ ( n ,  k) - E]C(n, k) = - ieFN 
a 

n’.k’ ak - (6k,k,)l(n, k; n’, k’)C(n’, k’) 

a 
= ieFN 6 k . k ’  - (I(n,  k; n’, k’)C(n’ ,  k’)) 

n f . k p  ak‘ 

(31) 

(32) 

(33) 

a a 
= ieF?d(z C(n,  k)  + 6ksk,c(Iz’, k ’ )  7 I(n, k; n’, k’) 

n’.k’ ak 
where we have used the relation [9] 

dk,kfZ(n, k; n’, k’)  = 6,,,16k,k’ 
to obtain the first term in (31) above and we have used the fact that 

a 
7 ( I (n ,  k ;  n’, k’)C(n’, k’)Sk,k’) = 0. 

kg dk 

This is because the function being differentiated is a periodic function of k’ .  It is also 
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quite justified to have a discrete set of k's and a continuous derivative in (33). This 
point is shown to be true in Appendix 1 for a general periodic function of k' .  

It should also be mentioned here that ~ ( n ,  k )  in (31) is not strictly the Bloch energy. 
It does include extra terms because we are dealing with a finite system, However, 
these terms are not important and are certainly not the cause of the interband coupling 
because of the following argument. Increasing the length of the system is equivalent 
to increasing the field as this reduces the Stark length which in turn reduces the 
coupling between the Stark states and the edges. If the interband coupling was due to 
the boundaries and the length of the system was increased (i.e., the field was increased) 
the extra boundary terms in ~ ( n ,  k )  would become smaller and so the amount of band 
mixing should decrease. However, as we have shown through our numerical work and 
our arguments an increase in the field results in more band coupling. Consequently 
this inconsistency means that ~ ( n ,  k )  can not be responsible for interband coupling 
and so for the purposes of the present work these extra terms can be ignored. 

The derivative of I(n, k ;  n ' ,  k')  with respect to k' can be written 

This is the important term which couples the bands and cannot be zero unless the S 
and P functions are independent of k. This is because [S,,,,ls) + p,t,k/p)] is orthonormal 
to [Sn,k ls )  + P,.,lp)] for n # n'. Therefore these can be viewed as two perpendicular 
vectors in a two-dimensional space lying on a unit circle. Consequently, the derivative 
with respect to k of [S , , , ,  1s) + Pn',k/p)] must lie parallel to [s,,k/s) + P,,klp)] which 
means the right-hand side of (34) is non-zero. The only way it could be zero is if the 
bands were decoupled in the first place which would mean that effectively a single- 
band model was being studied. There is in fact an error in [9] which results in the 
right-hand side of (34) being zero. This is explained in Appendix B. 

6. Stark ladders in superlattices 

To be able to observe Stark ladders, it has been suggested that a Stark length that is 
shorter than the sample is required. For instance, to obtain a Stark length that is 
comparable to the length of the sample being used requires a voltage applied across 
the sample which is of the order of the band width of the sample measured in electron 
volts. So for silicon, a voltage greater than ten volts is required. However, to really 
observe the aperiodic Zener resonances caused by the interaction of Stark ladders in 
different bands (figure 4), the sample must be shorter than a 'super' Stark length 
calculated using the valence band, the conduction band and also the gap that separates 
them, i.e. 

L > W l / e F  + E, /eF  + W 2 / e F  (35) 

where L is the length of the sample, W ,  is the valence band width, Eg the energy gap 
and W 2  is the conduction band width. To satisfy this equation for most materials would 
require an unacceptably large field. 
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Figure 11. Profile of the band-gap variation that results in the formation of a superlattice. 
The shaded region represents the band gap. 

However, a system in which one could possibly observe the Zener resonances is 
the semiconductor superlattice which was first proposed by Esaki and Tsu [ l l ]  in 1970. 
Layer-by-layer growth techniques such as molecular beam epitaxy have made it 
possible to grow layers of material such as GaAs followed by layers of another material 
such as AlGaAs which has a wider band gap. Repeating this process therefore leads 
to a structure made up of quantum wells and barriers which can have a lattice constant 
of anything up to 50 times or more that of the underlying materials (figure 11). The 
wells will have bound states to confine the electrons and holes and if there is an 
appropriate overlap between neighbouring wells, minibands can be formed (usually 
not more than two are formed because the dimensions of the wells only allow two 
bound states). 

In the paper by Esaki and Chang [12], the band widths and gaps were calculated 
for varying well widths in a AlAs/GaAs superlattice. For a well width of around 45 A 
the band width of the valence band was less than 0.01 eV, the band gap was 0.2 eV 
and the conduction band was 0.04 eV. Therefore if we take all these together we get 
a total effective band width of 0.25 eV. If the superlattice is say 50 periods long, then 
to observe Zener tunnelling the Stark length must be less than 4500A. This can be 
obtained with a field strength of 5.5 X 103Vcm-'. Also, by varying the well and 
barrier widths separately, it becomes possible to optimise the band structure for 
observing the Zener resonances. Namely, to produce narrow bands needed to minimise 
the Stark length, the barrier widths can be widened, but to regulate the amount of 
band mixing, the wells widths can be made narrower resulting in a larger band gap. 

Movaghar [13] has also studied the role of Stark ladders in superlattices with 
respect to the transport problem and also discusses the possibility of observing them 
experimentally. It has already been mentioned in this paper that scattering could 
broaden the Zener resonances which appear at very low fields to such a degree that 
their observation could become virtually impossible. We must, however, ensure that 
this is not the case for all the resonances. There are many possible scattering mech- 
anisms which could result in broadening (for example see [ 141) but two of the most 
likely mechanisms, however, are electron-optic phonon scattering to other Stark states 
and tunnelling out of the sample and into the contact region. In fact the second of 
these is essential for any type of current to flow. Therefore, this broadening is 
unavoidable. For Lorentzian broadening the profile of the resonance is given by 

(r/2I2 
( E  - E , ) ~  + ( 1 7 2 ) ~  

where E, is the position of the resonance and r is the full width at half-maximum and 
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is given by the lifetime of the Stark-Wannier states. For electron-optic phonon 
interactions the scattering time is approximately 1 X of 
6meV. To make an estimate of the rate of tunnelling into the contact region, we 
assume that it is of the same order of magnitude as the tunnelling rate between bands, 
therefore rcon = 2 meV. These amounts of broadening, therefore, still make it possible 
to observe at least some of the resonances, especially at high fields when they can be 
spaced at intervals of about 0.5 eV. 

The above theory of Stark ladders and of their possible observation in superlattices 
assumes that the electric field is uniformly dropped across the whole structure. That 
means that there are no high-field domains which could result in all or the majority 
of the field being dropped across one part of the superlattice. This, however, is thought 
to be what has been observed in many superlattice structures [12,15,16,17] where 
oscillations in the current are attributed to the movement of a high-field domain 
through the sample. Therefore, to avoid this happening, one would require a structure 
similar to that used by Capasso et a1 [18]. In their 35 period superlattice they observe 
regions of negative differential resistance in the photocurrent which they conclude are 
not the result of high-field domain formation. This is because their structure is of the 
type n+-i-p+. Therefore, it has a natural built in bias but does not permit the flow of 
electrons. To obtain a current, a He-Ne laser is used to create electrons as minority 
carriers in the p+ layer. The field across the superlattice can then be changed by 
applying a reverse bias. 

Finally, a further aspect involved in the observation of these Zener resonances is 
the requirement that the electron preserves the phase coherence of its wavefunction 
across the whole system. That is to say the sample must be of mesoscopic dimensions. 
However, this requirement can be satisfied fairly simply because of the technology 
that is now available to produce very pure, high mobility samples. 

s which results in a 

7. Conclusion 

In this paper we have studied a two-band tight-binding model to ascertain how the 
two bands interact in an electric field. We have demonstrated, using this model, that 
the matrix elements between the two bands do exist and result in aperiodic oscillations 
in the Zener tunnelling current. We have also discovered an increase in the Zener 
current with field which we attribute to the bands getting closer together. An approxi- 
mate form for this increase was derived showing that the current increases exponentially 
as minus the reciprocal of the field. The Stark-Wannier wavefunctions for this model 
were found to be linear combinations of the single band Stark-Wannier wavefunctions, 
namely Bessel functions of the first kind. 

We have also proposed that to observe the aperiodic oscillations in the current 
produced by the crossing of banded Stark ladders experimentally, a superlattice 
structure is required. This is because the sample must be longer than a ‘super’ Stark 
length which incorporates both energy bands and the gap that separates them and as 
superlattices have extremely narrow bands, this becomes possible at obtainable electric 
fields. 
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Appendix 1 

To illustrate that (33) is meaningful, consider any periodic function of k. This function 
can be written as the following Fourier series 

X 

(Al.l) 

We will now take the derivative of this function with respect to k to give 

eikmaCm = imaeikma c m  * (A1.2) 

As a finite system is being considered, only values of k that are integer multiples of 
2n/Na (where Na is the length of the system) are allowed to be used. Therefore 
restricting k to these values in (A1.2) and summing over k gives 

d ( ak m = - m  ) m = - x  

X 

X N -  1 

c (A1.3) 

The sum over n is the Kronecker delta given in (12). Therefore this term is zero unless 
m = 0. If m = 0 then the whole of the right-hand side of (A1.3) is zero. Therefore the 
sum over k of the derivative of the periodic function is zero, even if k is discrete. 

Appendix 2 

In the paper by Emin and Hart [9], they showed that the term in the Schrodinger 
equation that couples different bands under the influence of an electric field results 
from the alteration of the shape of the potential wells. Our numerical work has shown 
that this cannot be correct because by using the tight-binding model we neglect any 
field-dependent alteration of the potential wells and are only considering the step- 
function potential and still we get band coupling. Using (31) and (34) we also have 
shown that the only way the bands could possibly be decoupled in our model when 
there is a field present is if they were decoupled in the unperturbed system. Therefore, 
there must be a mistake in Emin and Hart’s paper that leads them to their conclusion. 

From our (34) we have that 

a 
gk,k’ - I(n, k ;  n’, k ’ )  

dk’ 

(A2.1) 

cannot be zero. In Emin and Hart’s paper they prove in the appendix 
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that this is indeed zero. However, during the proof they make a serious mistake. 
They are trying to show that the derivative of 6 n , n ’ 8 k , k ’  with respect to k’ at k = k’ is 
6 , , , d k , k f a ( N -  1)/2. They do this by writing the two delta functions in terms of 
Wannier functions. However, they use the orthogonality relation 

wi (x - pa)wnr (x  - p’a )  dx = 6,,n,6p,pf joNa (A2.2) 

where w(x - p a )  is the Wannier function centred on x = p a  and the integral is over 
the whole system. However, (A2.2) is incorrect. The Wannier functions are only 
orthogonal in this way if the integral is from minus infinity to infinity. The problem is 
that the Wannier functions located at the edge of the system are not orthogonal to 
the bulk Wannier functions. There is, therefore, an extra surface term which has been 
neglected in Emin and Hart’s paper and which when included no longer results in 
(A2.1) being zero. 

We shall now also calculate the derivative of 6 n , n ’ 6 k , k ’  with respect to k’ at k = k’ 
and show that in addition to d,,,dk,kdZ(N- 1)/2, we obtain the derivative of 
Z(n, k ;  n’, k ’ )  with respect to k‘.  We proceed by replacing the delta functions by two 
orthogonal Bloch functions. 

(A2.3) 

These Bloch functions could be the field-dependent type derived in [9]. We then 
reduce the integral to a unit cell to give 

k = k ’  

N-1 a 

N-1 -1 - iapei(k’-k)pa Ioa ei(k’-k)x u,k(x)un’k’(x) * d x l  
Np=o k = k ’  

a .  
Unk(X)Un’k’ dx 

1 N-l + - ei(k’-k)po - ei(k‘-k)x * 
Np=o ak’j ,  k = k ‘  

(A2.4) 

Therefore we have now regained the extra term that was absent in Emin and Hart’s 
result. Also note that the second term in (A2.4) cannot be simply cancelled in the 
limit N goes to infinity even though it is a surface term. In the next step in Emin and 
Hart’s argument another quantity is calculated which involves the same term of order 
( N -  1) as is in (A2.4). These terms are then subtracted to yield a result of order 
unity. Therefore, the limit of N tending to infinity has to be taken after this subtraction 
to leave a term of finite magnitude. 
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